Towards Solving the Cocktail Party Problem

DeLiang Wang

Perception & Neurodynamics Lab
Ohio State University
& Northwestern Polytechnical University
Outline of presentation

- What is the cocktail party problem?
 - Ideal binary mask and speech intelligibility
- Speech separation as DNN based mask estimation
 - Speech intelligibility tests on hearing impaired listeners
 - Generalization to new noises
 - Ideal ratio mask
- Reverberant speech separation
- Speaker separation
 - Talker-dependent
 - Talker-independent
Cocktail party problem

• **Term coined by Cherry**
 • “One of our most important faculties is our ability to listen to, and follow, one speaker in the presence of others. This is such a common experience that we may take it for granted; we may call it ‘the cocktail party problem.’ No machine has been constructed to do just that.” (Cherry, 1957)

• **Speech separation problem**
Human performance in different interferences

SRT 23 dB difference in Speech Reception Threshold!
Ideal binary mask as a separation goal

- Motivated by the auditory masking phenomenon and auditory scene analysis, we suggested the ideal binary mask as a main goal of CASA (Hu & Wang, 2001; 2004)
- The idea is to retain parts of a mixture where the target sound is stronger than the acoustic background, and discard the rest
- The definition of the ideal binary mask (IBM)

\[
IBM(t, f) = \begin{cases}
1 & \text{if } SNR(t, f) \geq \theta \\
0 & \text{otherwise}
\end{cases}
\]

- \(\theta\): A local SNR criterion (LC) in dB, which is typically chosen to be 0 dB
- Optimal SNR: Under certain conditions the IBM with \(\theta = 0\) dB is the optimal binary mask in terms of SNR gain (Li & Wang, 2009)
- Maximal articulation index (AI) in a simplified version (Loizou & Kim, 2011)
- It does not actually separate the mixture!
IBM illustration

Target

Intrusion

Mixture

Masked Mixture
Subject tests of ideal binary masking

- **IBM separation leads to dramatic speech intelligibility improvements**
 - Improvement for stationary noise is above 7 dB for normal-hearing (NH) listeners (Brungart et al.’06; Li & Loizou’08; Ahmadi et al.’13; Chen’16), and above 9 dB for hearing-impaired (HI) listeners (Anzalone et al.’06; Wang et al.’09)
 - Improvement for modulated noise is significantly larger than for stationary noise

- **With the IBM as the goal, the speech separation problem becomes a binary classification problem**
 - This new formulation opens the problem to a variety of pattern classification methods
Speech perception of noise with binary gains

- Wang et al. (2008) found that, when LC is chosen to be the same as the input SNR, nearly perfect intelligibility is obtained when input SNR is $-\infty$ dB (i.e. the mixture contains noise only with no target speech)
- IBM modulated noise for ???
Outline of presentation

- What is the cocktail party problem?
 - Ideal binary mask and speech intelligibility
- **Speech separation as DNN based mask estimation**
 - Speech intelligibility tests on hearing impaired listeners
 - Generalization to new noises
 - Ideal ratio mask
- Reverberant speech separation
- Speaker separation
 - Talker-dependent
 - Talker-independent
Y. Wang and Wang (2013) first introduced DNN to address the speech separation problem
- DNN is used for as a subband classifier, performing feature learning from raw acoustic features
- Classification aims to estimate the IBM
DNN as subband classifier (Wang & Wang’13)
Extensive training with DNN

• Training on 200 randomly chosen utterances from both male and female IEEE speakers, mixed with 100 environmental noises at 0 dB (~17 hours long)
 • Six million fully dense training samples in each channel, with 64 channels in total
• Evaluated on 20 unseen speakers mixed with 20 unseen noises at 0 dB
• DNN based classifier produced the state-of-the-art separation results at the time
Speech intelligibility evaluation

- Healy et al. (2013) subsequently evaluated the classifier on speech intelligibility of hearing-impaired listeners
 - A very challenging problem: “The interfering effect of background noise is the single greatest problem reported by hearing aid wearers” (Dillon’12)
- Two stage DNN training to incorporate T-F context in classification
Results and sound demos

- Both HI and NH listeners showed intelligibility improvements
- HI subjects with separation outperformed NH subjects without separation
Generalization to new noises

• While previous speech intelligibility results are impressive, a major limitation is that training and test noise samples were drawn from the same noise segments
 • Speech utterances were different
 • Noise samples were randomized
• This limitation can be addressed through large-scale training for IRM estimation (Chen et al.’16)

\[
IRM(t, f) = \sqrt{\frac{S^2(t, f)}{S^2(t, f) + N^2(t, f)}} = \sqrt{\frac{SNR(t, f)}{SNR(t, f) + 1}}
\]

• IRM can be viewed as a soft version of the IBM
Large-scale training

• Training set consisted of 560 IEEE sentences mixed with 10,000 (10K) non-speech noises (a total of 640,000 mixtures)
 • The total duration of the noises is about 125 h, and the total duration of training mixtures is about 380 h
 • Training SNR is fixed to -2 dB
• The only feature used is the simple T-F unit energy
• DNN architecture consists of 5 hidden layers, each with 2048 units
• Test utterances and noises are both different from those used in training
STOI performance at -2 dB input SNR

<table>
<thead>
<tr>
<th></th>
<th>Babble</th>
<th>Cafeteria</th>
<th>Factory</th>
<th>Babble2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprocessed</td>
<td>0.612</td>
<td>0.596</td>
<td>0.611</td>
<td>0.611</td>
<td>0.608</td>
</tr>
<tr>
<td>100-noise model</td>
<td>0.683</td>
<td>0.704</td>
<td>0.750</td>
<td>0.688</td>
<td>0.706</td>
</tr>
<tr>
<td>10K-noise model</td>
<td>0.792</td>
<td>0.783</td>
<td>0.807</td>
<td>0.786</td>
<td>0.792</td>
</tr>
<tr>
<td>Noise-dependent model</td>
<td>0.833</td>
<td>0.770</td>
<td>0.802</td>
<td>0.762</td>
<td>0.792</td>
</tr>
</tbody>
</table>

- **STOI** is a standard metric for predicted speech intelligibility
- **DNN model with large-scale training provides similar results to noise-dependent model**
Listening test results

- Both NH and HI listeners received benefit from algorithm processing in all conditions, with larger benefits for HI listeners.
Outline of presentation

- What is the cocktail party problem?
 - Ideal binary mask and speech intelligibility
- Speech separation as DNN based mask estimation
 - Speech intelligibility tests on hearing impaired listeners
 - Generalization to new noises
 - Ideal ratio mask
- Reverberant speech separation
- Speaker separation
 - Talker-dependent
 - Talker-independent
Reverberation

• Reverberation is everywhere: Reflections of the sound source (direct sound) from various surfaces

• Reverberation and background noise have confounding effects and can severely degrade speech intelligibility for HI listeners (Nabelek & Mason’81)
Signal model

• **Reverberant-noisy signal model**

\[y(t) = s(t) * h(t) + n(t) \]

• Clean (anechoic) speech: \(s(t) \)
• Room impulse response: \(h(t) \)
• Background noise: \(n(t) \)
• Reverberant-noisy speech signal: \(y(t) \)
Previous spectral mapping work

- **Han et al. (2015)** conducted the first DNN study on dereverberation and denoising
 - DNN was trained to learn the mapping from the spectrum of reverberant-noisy speech to the spectrum of anechoic speech (Lu et al.’13; Xu et al.’14; Han et al.’14)
 - However, an informal listening test indicates no speech intelligibility gain for HI listeners
Enhancement of reverberant-noisy speech as mask estimation

- Zhao et al. (2018) recently approached dereverberation and denoising as IRM estimation
- The input is a set of complementary features
- DNN architecture
 - Feedforward network with four hidden layers, each with 2048 units
- Speech intelligibility evaluation of enhanced speech on HI and NH listeners
 - At reverberation time of 0.6 s
Sound demos - typical stimuli

- **SSN (-5 dB)**

<table>
<thead>
<tr>
<th>Example 1</th>
<th></th>
<th>Example 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>unprocessed</td>
<td></td>
<td>unprocessed</td>
<td></td>
</tr>
<tr>
<td>processed</td>
<td></td>
<td>processed</td>
<td></td>
</tr>
<tr>
<td>clean</td>
<td></td>
<td>clean</td>
<td></td>
</tr>
</tbody>
</table>

- **Babble (0 dB)**

<table>
<thead>
<tr>
<th>Example 2</th>
<th></th>
<th>Example 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>unprocessed</td>
<td></td>
<td>unprocessed</td>
<td></td>
</tr>
<tr>
<td>processed</td>
<td></td>
<td>processed</td>
<td></td>
</tr>
<tr>
<td>clean</td>
<td></td>
<td>clean</td>
<td></td>
</tr>
</tbody>
</table>
Intelligibility results

SSN

Babble
Outline of presentation

- What is the cocktail party problem?
 - Ideal binary mask and speech intelligibility
- Speech separation as DNN based mask estimation
 - Speech intelligibility tests on hearing impaired listeners
 - Generalization to new noises
 - Ideal ratio mask
- Reverberant speech separation
- Speaker separation
 - Talker-dependent
 - Talker-independent
Speaker separation

- Unlike speech enhancement, speaker separation aims to extract the target speaker from a multi-talker mixture.
- Earlier work shows that DNN based IBM/IRM estimation remains an effective approach to address speaker separation (Huang et al.’14; Du et al.’14).
- We recently addressed two-talker separation as DNN-based IRM estimation (Healy et al.’17).
IRM estimation for speaker separation

- In the case of two-talker mixtures, the complement of a ratio mask gives an estimate of the interfering talker.
STOI performance

<table>
<thead>
<tr>
<th>Input SNR (dB)</th>
<th>Output SNR (dB)</th>
<th>Unprocessed STOI</th>
<th>Processed STOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12.00</td>
<td>5.10</td>
<td>43.5</td>
<td>83.5</td>
</tr>
<tr>
<td>-9.00</td>
<td>6.09</td>
<td>49.9</td>
<td>86.6</td>
</tr>
<tr>
<td>-6.00</td>
<td>7.11</td>
<td>56.9</td>
<td>89.1</td>
</tr>
<tr>
<td>-3.00</td>
<td>8.20</td>
<td>64.2</td>
<td>91.1</td>
</tr>
</tbody>
</table>

- Large STOI improvements are obtained by the speaker separation model
First demonstration of intelligibility improvements for HI listeners in interfering speech
At the common SNR of -6 and -9 dB, HI listeners with algorithm benefit perform equally well with NH listeners without processing
Talker-independent speaker separation

• This is the most general case, and it cannot be adequately addressed by training with many speaker pairs

• Talker-independent separation can be treated as unsupervised clustering (Bach & Jordan’06; Hu & Wang’13)
 • Such clustering, however, does not benefit from discriminant information utilized in supervised training

• Deep clustering (Hershey et al.’16) is the first approach to talker-independent separation by combining DNN based supervised feature learning and spectral clustering
Deep clustering

• With the ground truth partition of all T-F units, an affinity matrix is defined as

\[A = YY^T \]

• \(Y \) is the indicator matrix built from the IBM. \(Y_{i,c} \) is set to 1 if unit \(i \) belongs to (or dominated by) speaker \(c \), and 0 otherwise

• \(A_{i,j} = 1 \) if units \(i \) and \(j \) belong to the same speaker, and 0 otherwise

• To estimate the ground truth partition, DNN is trained to produce embedding vectors such that clustering in the embedding space provides a better partition estimate

• Isik et al. (2016) extend deep clustering by incorporating an enhancement network after binary mask estimation, and performing end-to-end training of embedding and clustering
Permutation invariant training (PIT)

• Recognizing that talker-dependent separation ties each DNN output to a specific speaker (permutation variant), PIT seeks to untie DNN outputs from speakers in order to achieve talker independence (Kolbak et al.’17)
 • Specifically, for a pair of speakers, there are two possible assignments, each of which is associated with a mean squared error (MSE). The assignment with the lower MSE is chosen and the DNN is trained to minimize the corresponding MSE

• Two versions of PIT
 • Frame-level PIT (tPIT): Permutation can vary from frame to frame, hence needs speaker tracing (sequential grouping) for speaker separation
 • Utterance-level PIT (uPIT): Permutation is fixed for a whole utterance, hence needs no speaker tracing
CASA based approach

• **Limitations of deep clustering and PIT**
 • In deep clustering, embedding vectors for T-F units with similar energies from underlying speakers tend to be ambiguous
 • uPIT does not work as well as tPIT at the frame level, particularly for same-gender speakers, but tPIT requires speaker tracing

• **Speaker separation in CASA is talker-independent**
 • CASA performs simultaneous (spectral) grouping first, and then sequential grouping across time

• **Liu & Wang (2018) proposed a CASA based approach by leveraging PIT and deep clustering**
 • For simultaneous grouping, tPIT is trained to predict the spectra of underlying speakers at each frame
 • For sequential grouping, DNN is trained to predict embedding vectors for simultaneously grouped spectra
Sequential grouping in CASA

• Differences from deep clustering
 • In deep clustering, DNN based embedding is done at the T-F unit level, whereas it is done at the frame level in CASA
 • Constrained K-means in CASA ensures that the simultaneously separated spectra of the same frame are assigned to different speakers
Speaker separation performance

- Talker-independent separation produces high-quality speaker separation results, rivaling talker-dependent separation results

<table>
<thead>
<tr>
<th></th>
<th>Same Gender</th>
<th>Different Gender</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep clustering++ (Isik et al., 2016)</td>
<td>9.4</td>
<td>12.0</td>
<td>10.8</td>
</tr>
<tr>
<td>PIT (Kolbæk et al., 2017)</td>
<td>7.5</td>
<td>12.2</td>
<td>10.0</td>
</tr>
<tr>
<td>CASA (Liu and Wang, 2018)</td>
<td>10.3</td>
<td>12.6</td>
<td>11.5</td>
</tr>
</tbody>
</table>
Talker-independent speaker separation demos

New pair of male-male speaker mixture

<table>
<thead>
<tr>
<th>Speaker1</th>
<th>Speaker2</th>
</tr>
</thead>
<tbody>
<tr>
<td>- uPIT</td>
<td>- uPIT</td>
</tr>
<tr>
<td>- DC++</td>
<td>- DC++</td>
</tr>
<tr>
<td>- CASA</td>
<td>- CASA</td>
</tr>
<tr>
<td>- clean</td>
<td>- clean</td>
</tr>
</tbody>
</table>
Rapid advances in talker-independent speaker separation

ΔSI-SDR (dB), ΔSDR (dB) and PESQ comparison between recent algorithms on the open speaker condition of wsj0-2mix and wsj0-3mix. ("-" means not reported)

<table>
<thead>
<tr>
<th>Approaches</th>
<th>wsj0-2mix</th>
<th></th>
<th>wsj0-3mix</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔSI-SDR</td>
<td>ΔSDR</td>
<td>PESQ</td>
<td>ΔSI-SDR</td>
</tr>
<tr>
<td>Unprocessed</td>
<td>0.0</td>
<td>0.0</td>
<td>2.01</td>
<td>0.0</td>
</tr>
<tr>
<td>DC++ (Isik et al., 2016)</td>
<td>10.8</td>
<td>-</td>
<td>-</td>
<td>7.1</td>
</tr>
<tr>
<td>uPIT-ST (Kolbaek et al., 2017)</td>
<td>-</td>
<td>10.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ADANet (Luo et al. 2018a)</td>
<td>10.4</td>
<td>10.8</td>
<td>2.82</td>
<td>9.1</td>
</tr>
<tr>
<td>Chimera++ (BLSTM) (Wang et al., 2018a)</td>
<td>11.2</td>
<td>11.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+ WA-MISI-5 (Wang et al., 2018b)</td>
<td>12.6</td>
<td>12.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+ Filterbank learning (Wichern et al., 2018)</td>
<td>12.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+ PhaseBook (Le Roux et al., 2018)</td>
<td>12.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BLSTM-TasNet (Luo et al., 2018b)</td>
<td>13.2</td>
<td>13.6</td>
<td>3.04</td>
<td>-</td>
</tr>
<tr>
<td>conv-TasNet-gLN (Luo et al., 2018c)</td>
<td>14.6</td>
<td>15.0</td>
<td>3.25</td>
<td>11.6</td>
</tr>
<tr>
<td>Sign Prediction Net (Wang et al., 2018c)</td>
<td>15.3</td>
<td>15.6</td>
<td>3.36</td>
<td>12.1</td>
</tr>
</tbody>
</table>
A solution in sight for cocktail party problem?

• What does a solution to the cocktail party problem look like?
 • A system that achieves human auditory analysis performance in all listening situations (Wang & Brown’06)

• An automatic speech recognition (ASR) system that matches the human speech recognition performance in all noisy environments
 • Dependency on ASR
A solution in sight (cont.)?

• A speech separation system that helps hearing-impaired listeners to achieve the same level of speech intelligibility as normal-hearing listeners in all noisy environments

• This is my current working definition – see my IEEE Spectrum cover story in March, 2017
Conclusion

• Formulation of the cocktail party problem as mask estimation enables the use of supervised learning
 • Supervised separation has yielded the first demonstrations of speech intelligibility improvement in noise
 • Large-scale training with DNN is a promising direction to make speech separation perform in a variety of conditions
• Reverberant-noisy speech separation can be effectively addressed in the same framework
• Major advances in both talker-dependent and talker-independent speaker separation
• The cocktail party problem is within reach